AP® Physics B
2003 Free-Response Questions

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
TABLE OF INFORMATION FOR 2003

CONSTANTS AND CONVERSION FACTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unified atomic mass unit,</td>
<td>u</td>
<td>$1 = 1.66 	imes 10^{-27}$ kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton mass,</td>
<td>m_p</td>
<td>$1.67 	imes 10^{-27}$ kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutron mass,</td>
<td>m_n</td>
<td>$1.67 	imes 10^{-27}$ kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron mass,</td>
<td>m_e</td>
<td>$9.11 	imes 10^{-31}$ kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnitude of the electron charge,</td>
<td>e</td>
<td>$1.60 	imes 10^{-19}$ C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avogadro’s number,</td>
<td>N_0</td>
<td>$6.02 	imes 10^{23}$ mol⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal gas constant,</td>
<td>R</td>
<td>8.31 J/(mol·K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boltzmann’s constant,</td>
<td>k_b</td>
<td>$1.38 	imes 10^{-23}$ J/K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed of light,</td>
<td>c</td>
<td>$3.00 	imes 10^8$ m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planck’s constant,</td>
<td>h</td>
<td>$6.63 	imes 10^{-34}$ J·s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hc</td>
<td></td>
<td>$1.99 	imes 10^{-21}$ J·m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.24 	imes 10^6$ eV·nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum permittivity,</td>
<td>ε_0</td>
<td>$8.85 	imes 10^{-12}$ C²/N·m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulomb’s law constant,</td>
<td>k</td>
<td>$1/4\pi\varepsilon_0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum permeability,</td>
<td>μ_0</td>
<td>$4\pi \times 10^{-7}$ (T·m)/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic constant,</td>
<td>$k' = \mu_0 / 4\pi$</td>
<td>10^{-2} (T·m)/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal gravitational constant,</td>
<td>G</td>
<td>$6.67 	imes 10^{-11}$ m³/kg·s²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceleration due to gravity at the</td>
<td>g</td>
<td>9.8 m/s²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth’s surface,</td>
<td></td>
<td>$1.0 	imes 10^5$ Pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 atmosphere pressure,</td>
<td>1 atm</td>
<td>$1.0 	imes 10^5$ N/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 electron volt,</td>
<td>1 eV</td>
<td>$1.60 	imes 10^{-19}$ J</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNITS

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>mole</td>
<td>mol</td>
</tr>
<tr>
<td>hertz</td>
<td>Hz</td>
</tr>
<tr>
<td>newton</td>
<td>N</td>
</tr>
<tr>
<td>pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>watt</td>
<td>W</td>
</tr>
<tr>
<td>coulomb</td>
<td>C</td>
</tr>
<tr>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>Henry</td>
<td>H</td>
</tr>
<tr>
<td>farad</td>
<td>F</td>
</tr>
<tr>
<td>tesla</td>
<td>T</td>
</tr>
<tr>
<td>degree Celsius</td>
<td>°C</td>
</tr>
<tr>
<td>electron-volt</td>
<td>eV</td>
</tr>
</tbody>
</table>

PREFIXES

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^9</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>µ</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
</tbody>
</table>

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES

<table>
<thead>
<tr>
<th>θ</th>
<th>sin θ</th>
<th>cos θ</th>
<th>tan θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30°</td>
<td>1/2</td>
<td>√3/2</td>
<td>√3/3</td>
</tr>
<tr>
<td>37°</td>
<td>3/5</td>
<td>4/5</td>
<td>3/4</td>
</tr>
<tr>
<td>45°</td>
<td>√2/2</td>
<td>√2/2</td>
<td>1</td>
</tr>
<tr>
<td>53°</td>
<td>4/5</td>
<td>3/5</td>
<td>4/3</td>
</tr>
<tr>
<td>60°</td>
<td>√3/2</td>
<td>1/2</td>
<td>√3</td>
</tr>
<tr>
<td>90°</td>
<td>1</td>
<td>0</td>
<td>∞</td>
</tr>
</tbody>
</table>

The following conventions are used in this examination.

I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.

II. The direction of any electric current is the direction of flow of positive charge (conventional current).

III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.

IV. For mechanics and thermodynamics equations, W represents the work done on a system.
ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 2003

NEWTONIAN MECHANICS

\[v = v_0 + at \]
\[x = x_0 + v_0 t + \frac{1}{2} at^2 \]
\[v^2 = v_0^2 + 2a(x - x_0) \]
\[\sum F = F_{net} = ma \]
\[F_{fric} \leq \mu N \]
\[a_c = \frac{v^2}{r} \]
\[\tau = rF \sin \theta \]
\[p = mv \]
\[J = F\Delta t = \Delta p \]
\[K = \frac{1}{2} mv^2 \]
\[\Delta U_g = mgh \]
\[W = F \cdot \Delta r = F\Delta r \cos \theta \]
\[P_{avg} = \frac{W}{\Delta t} \]
\[P = F \cdot v = Fv \cos \theta \]
\[\mathbf{F}_s = -k \mathbf{x} \]
\[U_s = \frac{1}{2} kx^2 \]
\[T_s = 2\pi \sqrt{\frac{m}{k}} \]
\[T_p = 2\pi \sqrt{\frac{r}{g}} \]
\[T = \frac{1}{f} \]
\[F_G = -\frac{Gm_1m_2}{r^2} \]
\[U_G = -\frac{Gm_1m_2}{r} \]

ELECTRICITY AND MAGNETISM

\[F = \frac{1}{4\pi \varepsilon_0} \frac{q_1q_2}{r^2} \]
\[\mathbf{E} = \frac{\mathbf{F}}{q} \]
\[U_E = qV = \frac{1}{4\pi \varepsilon_0} \frac{q_1q_2}{r} \]
\[E_{avg} = \frac{V}{d} \]
\[V = \frac{1}{4\pi \varepsilon_0} \sum_i q_i \]
\[C = \frac{Q}{V} \]
\[C = \frac{\varepsilon_0 A}{d} \]
\[U_c = \frac{1}{2} QV = \frac{1}{2} CV^2 \]
\[I_{avg} = \frac{\Delta Q}{\Delta t} \]
\[R = \frac{\mu l}{A} \]
\[V = IR \]
\[P = IV \]
\[C_p = \sum_i C_i \]
\[\frac{1}{C_s} = \sum_i \frac{1}{C_i} \]
\[R_s = \sum_i R_i \]
\[\frac{1}{R_p} = \sum_i \frac{1}{R_i} \]
\[F_B = qv \mathbf{B} \sin \theta \]
\[F_B = BI\ell \sin \theta \]
\[B = \frac{\mu_0 I}{2\pi r} \]
\[\phi_m = \mathbf{B} \cdot \mathbf{A} = BA \cos \theta \]
\[\mathcal{E}_{avg} = -\frac{\Delta \phi_m}{\Delta t} \]
\[\mathcal{E} = Btv \]
Fluid Mechanics and Thermal Physics

- \(p = p_0 + \rho gh \)
- \(F_{\text{buoy}} = \rho V g \)
- \(A_1 v_1 = A_2 v_2 \)
- \(p + \rho gy + \frac{1}{2} \rho v^2 = \text{const.} \)
- \(\Delta \ell = \alpha \ell_0 \Delta T \)
- \(Q = m L \)
- \(Q = mc \Delta T \)
- \(p = \frac{F}{A} \)
- \(pV = nRT \)
- \(K_{\text{avg}} = \frac{3}{2} k_b T \)
- \(v_{\text{rms}} = \sqrt{\frac{\frac{3}{2} k_b T}{M}} = \sqrt{\frac{3 k_b T}{\mu}} \)
- \(W = -p \Delta V \)
- \(Q = nc \Delta T \)
- \(\Delta U = Q + W \)
- \(\Delta U = n c V \Delta T \)
- \(e = \frac{W}{Q_H} \)
- \(e_c = \frac{T_H - T_C}{T_H} \)

Waves and Optics

- \(v = f \lambda \)
- \(n = \frac{c}{v} \)
- \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \)
- \(\sin \theta_c = \frac{n_2}{n_1} \)
- \(\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f} \)
- \(M = \frac{h_i}{h_0} = -\frac{s_i}{s_0} \)
- \(M = \frac{h_i}{h_0} = -\frac{s_i}{s_0} \)
- \(d \sin \theta = m \lambda \)
- \(x_m = \frac{m \lambda L}{d} \)

Geometry and Trigonometry

- Rectangle
 - \(A = bh \)
 - \(C = 2(b + h) \)
- Triangle
 - \(A = \frac{1}{2} bh \)
 - \(V = \frac{1}{2} bh \)
- Circle
 - \(A = \pi r^2 \)
 - \(C = 2\pi r \)
- Parallelepiped
 - \(V = lwh \)
- Cylinder
 - \(V = \pi r^2 h \)
 - \(S = 2\pi r h + 2\pi r^2 \)
- Sphere
 - \(V = \frac{4}{3} \pi r^3 \)
 - \(S = 4\pi r^2 \)
- Right Triangle
 - \(a^2 + b^2 = c^2 \)
 - \(\sin \theta = \frac{a}{c} \)
 - \(\cos \theta = \frac{b}{c} \)
 - \(\tan \theta = \frac{a}{b} \)
1. (15 points)
A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on the floor. The opposite end of the rope is held by Student B of mass 60 kg, who is suspended at rest above the floor.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(b) Calculate the magnitude of the force exerted by the floor on Student A.

Student B now climbs up the rope at a constant acceleration of 0.25 m/s² with respect to the floor.

(c) Calculate the tension in the rope while Student B is accelerating.

(d) As Student B is accelerating, is Student A pulled upward off the floor? Justify your answer.

(e) With what minimum acceleration must Student B climb up the rope to lift Student A upward off the floor?
2. (15 points)
A circuit contains two resistors (10 Ω and 20 Ω) and two capacitors (12 μF and 6 μF) connected to a 6 V battery, as shown in the diagram above. The circuit has been connected for a long time.

(a) Calculate the total capacitance of the circuit.
(b) Calculate the current in the 10 Ω resistor.
(c) Calculate the potential difference between points A and B.
(d) Calculate the charge stored on one plate of the 6 μF capacitor.
(e) The wire is cut at point P. Will the potential difference between points A and B increase, decrease, or remain the same?
 ____ increase ____ decrease ____ remain the same

Justify your answer.
3. (15 points)
A rail gun is a device that propels a projectile using a magnetic force. A simplified diagram of this device is shown above. The projectile in the picture is a bar of mass M and length D, which has a constant current I flowing through it in the $+y$-direction, as shown. The space between the thin frictionless rails contains a uniform magnetic field B, perpendicular to the plane of the page. The magnetic field and rails extend for a distance L. The magnetic field exerts a constant force F on the projectile, as shown.

Express all algebraic answers to the following parts in terms of the magnitude F of the constant magnetic force, other quantities given above, and fundamental constants.

(a) Determine the position x of the projectile as a function of time t while it is on the rail if the projectile starts from rest at $x = 0$ when $t = 0$.

(b) Determine the speed of the projectile as it leaves the right-hand end of the track.

(c) Determine the energy supplied to the projectile by the rail gun.

(d) In what direction must the magnetic field B point in order to create the force F? Explain your reasoning.

(e) Calculate the speed of the bar when it reaches the end of the rail given the following values.

$$ B = 5 \text{ T} \quad L = 10 \text{ m} \quad I = 200 \text{ A} \quad M = 0.5 \text{ kg} \quad D = 10 \text{ cm} $$
4. (15 points)
In your physics lab, you have a concave mirror with radius of curvature $r = 60$ cm. You are assigned the task of finding experimentally the location of a lit candle such that the mirror will produce an image that is 4 times the height of the lit candle.

You have an optical bench, which is a long straight track as shown above. Objects in holders can be attached at any location along the bench. In addition to the concave mirror and the lit candle in holders, you also have the following equipment.

- convex mirror in holder
- concave lens in holder
- convex lens in holder
- meter stick
- ruler
- screen in holder

(a) Briefly list the steps in your procedure that will lead you to the location of the lit candle that produces the desired image. Include definitions of any parameters that you will measure.

(b) On the list of equipment before part (a) place check marks beside each additional piece of equipment you will need to do this experiment.

(c) On the scale below, draw a ray diagram of your lab setup in part (a) to show the locations of the candle, the mirror, and the image.

(d) Check the appropriate spaces below to indicate the characteristics of your image.

- real
- upright
- larger than object
- virtual
- inverted
- smaller than object

(e) You complete your assignment and turn in your results to your teacher. She tells you that another student, using equipment from the same list, has found a different location for the lit candle. However, she tells both of you that the labs were done correctly and that neither experiment need be repeated. Explain why both experiments can be correct.
5. (10 points)
A cylinder with a movable piston contains 0.1 mole of a monatomic ideal gas. The gas, initially at state \(a \), can be taken through either of two cycles, \(abca \) or \(abcda \), as shown on the \(PV \) diagram above. The following information is known about this system.

\[Q_{c \rightarrow a} = 685 \text{ J along the curved path} \]
\[W_{c \rightarrow a} = -120 \text{ J along the curved path} \]
\[U_a - U_b = 450 \text{ J} \]
\[W_{a \rightarrow b \rightarrow c} = 75 \text{ J} \]

(a) Determine the change in internal energy, \(U_a - U_c \), between states \(a \) and \(c \).

(b) i. Is heat added to or removed from the gas when the gas is taken along the path \(abc \) ?

\[\underline{\text{____ added to the gas}} \quad \underline{\text{____ removed from the gas}} \]

ii. Calculate the amount added or removed.

(c) How much work is done on the gas in the process \(cda \)?

(d) Is heat added to or removed from the gas when the gas is taken along the path \(cda \)?

\[\underline{\text{____ added to the gas}} \quad \underline{\text{____ removed from the gas}} \]

Explain your reasoning.
6. (10 points)

A diver descends from a salvage ship to the ocean floor at a depth of 35 m below the surface. The density of ocean water is 1.025×10^3 kg/m3.

(a) Calculate the gauge pressure on the diver on the ocean floor.

(b) Calculate the absolute pressure on the diver on the ocean floor.

The diver finds a rectangular aluminum plate having dimensions $1.0 \text{ m} \times 2.0 \text{ m} \times 0.03 \text{ m}$. A hoisting cable is lowered from the ship and the diver connects it to the plate. The density of aluminum is 2.7×10^3 kg/m3. Ignore the effects of viscosity.

(c) Calculate the tension in the cable if it lifts the plate upward at a slow, constant velocity.

(d) Will the tension in the hoisting cable increase, decrease, or remain the same if the plate accelerates upward at 0.05 m/s^2?

___ increase ___ decrease ___ remain the same

Explain your reasoning.

7. (10 points)

Energy-level diagrams for atoms that comprise a helium-neon laser are given above. As indicated on the left, the helium atom is excited by an electrical discharge and an electron jumps from energy level E_0 to energy level E_2.

The helium atom (atomic mass 4) then collides inelastically with a neon atom (atomic mass 20), and the helium atom falls to the ground state, giving the neon atom enough energy to raise an electron from E_0 to E_2.

The laser emits light when an electron in the neon atom falls from energy level E_2 to energy level E_1.

(a) Calculate the minimum speed the helium atom must have in order to raise the neon electron from E_0 to E_2.

(b) Calculate the DeBroglie wavelength of the helium atom when it has the speed determined in (a).

(c) The excited neon electron then falls from E_2 to E_1 and emits a photon of laser light. Calculate the wavelength of this light.

(d) This laser light is now used to repair a detached retina in a patient’s eye. The laser puts out pulses of length 20×10^{-3} s that average 0.50 W output per pulse. How many photons does each pulse contain?

END OF EXAMINATION