3. A small conducting sphere of mass 5×10^{-3} kilogram, attached to a string of length 2×10^{-1} meter, is at rest in a uniform electric field E, directed horizontally to the right as shown above. There is a charge of 5×10^{-6} coulomb on the sphere. The string makes an angle of 30° with the vertical. Assume $g = 10$ meter second squared. ($\sin 30^\circ = \frac{1}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$, $\tan 30^\circ = \frac{\sqrt{3}}{3}$)

(a) In the space below, draw and label all the forces acting on the sphere.

(b) Calculate the tension in the string and the magnitude of the electric field.

(c) The string now breaks. Describe the subsequent motion of the sphere and sketch on the following diagram the path of the sphere while in the electric field.