A Proof by Mathematical Induction

We will use mathematical induction to prove that: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) \).

The proof has two parts:

I. A proof that the formula works for the first case, \(i=1 \).
II. A proof that if the formula works for the \(k \)th case, it works for the \((k+1) \)st case.

Part I.

Substitute \(n = 1 \) into the formula: \(\sum_{i=1}^{1} i = 1 = \frac{1}{2}(1)(1+1) \). The formula works for this case.

Part II.

Assume that the formula works for the \(k \)th case: \(\sum_{i=1}^{k} i = \frac{1}{2}k(k+1) \).

Prove that the formula works for the \((k+1) \)st case: \(\sum_{i=1}^{k+1} i = \frac{1}{2}(k+1)(k+2) \).

If we show that \(\sum_{i=1}^{k} i + (k+1) = \sum_{i=1}^{k+1} i \), this will complete the proof.

Does \(\frac{1}{2}k(k+1) + (k+1) = \frac{1}{2}(k+1)(k+2) \)? A bit of algebra shows that this is correct.

Therefore, we have proven that \(\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) \).

Exercise 1: Prove by mathematical induction that \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \).

Exercise 2: Using the formulas given above for \(\sum_{i=1}^{n} i \) and \(\sum_{i=1}^{n} i^2 \), obtain a formula for the sum of the squares of the first \(n \) consecutive odd numbers. That is find an expression in terms of \(n \) for \(\sum_{i=1}^{n} (2i-1)^2 \).
Moment of inertia of a long, uniform cylinder

Problem: A thin cylindrical rod of length d has uniform density. The rod is rotated at one end about an axis transverse to its length. Find the rotational inertia of the rod about this axis.

Starting the solution: Position the x axis along the longitudinal axis of the rod as in the diagram to the right. Let the origin be on the axis of rotation. Divide the rod into n equal elements of width Δx such that $\Delta x = d/n$. If the entire mass of the rod is denoted as M, then the mass of element Δx is $\Delta m = M/n$. Finally, let the position of the center of mass of the ith element be x_i, where the index i goes from 1 to n.

Now let’s calculate the rotational inertia for different values of n. We will be using the approximate formula:

$$I_n = \sum_{i=1}^{n} \frac{M}{n} x_i^2$$

The plan is make n larger and larger and eventually take the limit of I_n as n approaches infinity. For $n = 1$, $x_i = d/2$, and the rotational inertia in this crude approximation is:

$$I_1 = \sum_{i=1}^{1} \frac{M}{1} x_i^2$$

$$= M (d/2)^2$$

$$= M d^2 / 4$$

For $n = 2$, the values of x_i for the two elements are $d/4$ and $3d/4$. Then we have:

$$I_2 = \frac{M}{2} [(d/4)^2 + (3d/4)^2]$$

$$= (5/16) Md^2$$

For $n = 4$, the values of x_i are $d/8, 3d/8, 5d/8, 7d/8$. We see a pattern of odd numbers emerging. Expressing I_4 in such a way as to show this pattern explicitly, we have:
Completing the solution: Generalize the result obtained for I_4 to any value of n. That means you’ll need to replace the denominators 4 and 64 with functions of n. You’ll also need to write a summation expression in terms of the index, i, for the sum of the squares of the first n odd integers. The induction proof that you did earlier should be useful. Once you have an expression for I_n evaluate it in the limit that n goes to infinity and Δx becomes infinitesimal. Your final result should be $I = fMd^2$, where f is a fraction that you are to determine.