FOR YOU TO READ
Changing the Pitch

Sound comes from vibration. You observed the vibration of the string as it produced sound. You investigated two of the variables that affect the sound of a vibrating string.

When you pushed the vibrating string down against the table, the length of the string that was vibrating became shorter. Shortening the string increased the pitch (resulted in a higher pitch). In the same way, a guitarist or violinist pushes the string against the instrument to shorten the length that vibrates and increases the pitch.

When you hung weights on the end of the string, that increased the pitch too. These weights tightened the string, so they created more tension in it. As the string tension increased, the pitch of the sound also increased. In tuning a guitar or violin, the performer changes the string tension by turning a peg attached to one end of a string. As the peg pulls the string tighter, the pitch goes up.

Combining these two results into one expression, you can say that increasing the tension or decreasing the length of the string will increase the pitch.

The string producing the pitch is actually setting up a standing wave between its endpoints. The length of the string determines the wavelength of this standing wave. Twice the distance between the endpoints is the wavelength of the sound. The pitch that you hear is related to the frequency of the wave. The higher the pitch, the higher the frequency. The speed of the wave is equal to its frequency multiplied by its wavelength.

\[v = f \lambda \]

where \(v \) = speed
\(f \) = frequency
\(\lambda \) = wavelength

If the speed of a wave is constant, a decrease in the wavelength will result in an increase in the frequency or a higher pitch. A shortened string produces a higher pitch.

Reflecting on the Activity and the Challenge

Part of the challenge is to create a sound show. In this activity you investigated the relationship of pitch to length of the string and tension of the string: the shorter the string, the higher the pitch; the greater the tension, the higher the pitch. You also learned that the string is setting up a standing wave between its two ends, just like the standing wave that you created in the Slinky in Activity 1. That’s the physics of stringed instruments! If you wanted to create a stringed or multi-string instrument for your show, you would now know how to adjust the length and tension to produce the notes you want. If you were to make such a stringed instrument, you could explain how you change the pitch by referring to the results of this activity.