THE VAN DE GRAAFF GENERATOR

In 1929 Robert J. Van de Graaff designed and built an electrostatic generator that is used extensively in nuclear physics research. The principles of its operation can be understood with the help of the principles of electric fields and charges already presented in this chapter. Figure 15.23 shows the basic construction details of this device. A motor-driven pulley, \(P \), moves a belt past positively charged comb-like metallic needles positioned at \(A \). Negative charges are attracted to these needles from the belt, leaving the left side of the belt with a net positive charge. The positive charges attract electrons onto the belt as it moves past a second comb of needles at \(B \), increasing the excess positive charge on the dome. Since the electric field inside the metal dome is negligible, the positive charge on it can easily be increased regardless of how much charge is already present. The result is that the dome is left with a large amount of positive charge.

This accumulation of charge on the dome cannot continue indefinitely, because eventually an electric discharge through the air takes place. To understand why, consider that, as more and more charge appears on the surface of the dome, the magnitude of the electric field at the surface of the dome is also increasing. Finally, the strength of the field becomes great enough to partially ionize the air near the surface, thus making the air partially conducting. Charges on the dome now have a pathway to leak off into the air, which can produce some spectacular “lightning bolts” as the discharge occurs. As noted earlier, charges find it easier to leap off a surface at points where the curvature is great. As a result, one way to inhibit the electric discharge, and to increase the amount of charge that can be stored on the dome, is to increase its radius. Another method for inhibiting discharge is to place the entire system in a container filled with a high-pressure gas, which is significantly more difficult to ionize than air at atmospheric pressure.

If protons (or other charged particles) are introduced into a tube attached to the dome, the large electric field of the dome exerts a repulsive force on the protons, causing them to accelerate to energies high enough to initiate nuclear reactions between the protons and various target nuclei.