Monte Carlo Integration Basics

Floyd Bullard

Teaching Contemporary Mathematics, NCSSM

25–26 January 2008
A Simple Integral

Consider the following definite integral $I \equiv \int_{-1}^{1} f(x)dx$, where $f(x) = 1 - x^2$.

Figure: $I = 4/3 \approx 1.3333$
A Simple Integral

Consider the following definite integral \(I \equiv \int_{-1}^{1} f(x) \, dx \), where \(f(x) = 1 - x^2 \).

Figure: Using 10 trapezoids: \(I \approx 1.32 \).
Let’s call J the region bounded above by $y = f(x)$ and below by the x-axis. Its area is equal to the definite integral of interest: $I = A(J)$.
Let’s call J the region bounded above by $y = f(x)$ and below by the x-axis. Its area is equal to the definite integral of interest: $I = A(J)$.

Consider the rectangle $R = [-1, 1] \times [0, 1]$. We know that its area is $A(R) = 2$, and we know that it completely contains the region of interest, J.
Let’s call J the region bounded above by $y = f(x)$ and below by the x-axis. Its area is equal to the definite integral of interest: $I = A(J)$.

Consider the rectangle $R = [-1, 1] \times [0, 1]$. We know that its area is $A(R) = 2$, and we know that it completely contains the region of interest, J.

If we knew what fraction p of R was occupied by J, then we could compute the area of J as simply $I = A(R) \times p = 2p$.
Let’s call J the region bounded above by $y = f(x)$ and below by the x-axis. Its area is equal to the definite integral of interest: $I = A(J)$.

Consider the rectangle $R = [-1, 1] \times [0, 1]$. We know that its area is $A(R) = 2$, and we know that it completely contains the region of interest, J.

If we knew what fraction p of R was occupied by J, then we could compute the area of J as simply $I = A(R) \times p = 2p$.

Suggestions?
Let’s randomly sample points uniformly from R and determine what fraction \hat{p} of them lie in the region J. With a large number of sampled points, \hat{p} will be a reasonably good approximation of p.
Let’s randomly sample points uniformly from R and determine what fraction \hat{p} of them lie in the region J. With a large number of sampled points, \hat{p} will be a reasonably good approximation of p.

Figure: In this simulation, $n=1000$, $\hat{p}=0.674$, and $\hat{I} = 1.348$.
Using elementary statistics, we can not only estimate the value of p with the sample proportion \hat{p}, but also determine a reasonable margin of error. Based on one simulation using $n = 100,000$ draws, a 99% confidence interval estimate of p is 0.6656 ± 0.0038, resulting in an estimate of I equal to 1.3312 ± 0.0076.
Rejection sampling is occasionally useful in statistics, but it is inefficient for performing Monte Carlo integration: after drawing each x_i and computing $f(x_i)$ (which may be computationally difficult), the information is reduced to a single bit, 0 or 1.

We can do better.
Recall that if X is a random variable whose probability density function is g, and $h(X)$ is some function of X, then the expected value of $h(X)$ is given by

$$E[h(X)] = \int_{-\infty}^{+\infty} h(x)g(x)dx.$$
If X has probability density function g and $h(x) = \frac{f(x)}{g(x)}$, what is the expected value of $h(X)$?
If X has probability density function g and $h(x) = \frac{f(x)}{g(x)}$, what is the expected value of $h(X)$?

$$E[h(x)] = \int_{-\infty}^{+\infty} h(x)g(x)dx$$
If X has probability density function g and $h(x) = \frac{f(x)}{g(x)}$, what is the expected value of $h(X)$?

\[
E[h(x)] = \int_{-\infty}^{+\infty} h(x)g(x)dx
\]

\[
= \int_{-\infty}^{+\infty} \left[\frac{f(x)}{g(x)} \right] g(x)dx
\]
If X has probability density function g and $h(x) = \frac{f(x)}{g(x)}$, what is the expected value of $h(X)$?

\[
E[h(x)] = \int_{-\infty}^{+\infty} h(x)g(x)dx
\]

\[
= \int_{-\infty}^{+\infty} \left[\frac{f(x)}{g(x)} \right] g(x)dx
\]

\[
= \int_{-\infty}^{+\infty} f(x)dx
\]
If X has probability density function g and $h(x) = \frac{f(x)}{g(x)}$, what is the expected value of $h(X)$?

$$E[h(x)] = \int_{-\infty}^{+\infty} h(x)g(x)dx$$
$$= \int_{-\infty}^{+\infty} \left[\frac{f(x)}{g(x)} \right] g(x)dx$$
$$= \int_{-\infty}^{+\infty} f(x)dx$$
$$= I$$
If X has pdf g, then $E \left[\frac{f(x)}{g(x)} \right] = I$. That means that we can sample an x_i randomly from g, compute $h_i \equiv \frac{f(x_i)}{g(x_i)}$, and it will be an unbiased estimator of our integral I.
If X has pdf g, then $E \left[\frac{f(x)}{g(x)} \right] = I$. That means that we can sample an x_i randomly from g, compute $h_i \equiv \frac{f(x_i)}{g(x_i)}$, and it will be an unbiased estimator of our integral I.

We can do this many times and get a whole collection of unbiased estimates of I. These can be treated as a random sample from a population whose mean is I, and a confidence interval estimate of I can be computed.
For example, consider again the definite integral
\[I \equiv \int_{-1}^{1} f(x)\,dx, \] where \(f(x) = 1 - x^2. \)
Let’s let g be the standard normal distribution.
Let’s let g be the standard normal distribution.

We’ll draw many values of x_i from the distribution g, and for each one we’ll compute $h_i \equiv f(x_i)/g(x_i)$. Each h_i should be an unbiased estimator of I.
Figure: $f(x)$ and $g(x)$. We’ll draw x_i’s from g, then we’ll compute $h_i \equiv \frac{f(x)}{g(x)}$. Each h_i will be an unbiased estimate of I.
Figure: Here we sampled $n = 100,000$ points. A 99% confidence interval estimate of I is 1.3311 ± 0.0086.
When we used rejection sampling with $n=100,000$ draws, our margin of error was ± 0.0076. Using importance sampling with $n=100,000$ draws, our margin of error was ± 0.0086. Can we do better?
When we used rejection sampling with $n=100,000$ draws, our margin of error was ± 0.0076. Using importance sampling with $n=100,000$ draws, our margin of error was ± 0.0086. Can we do better?

How can we choose our importance function g so that our margin of error will be smaller?
Let’s again consider the definite integral $I \equiv \int_{-1}^{1} f(x)dx$, where $f(x) = 1 - x^2$. This time our importance function will be the normal distribution with $\mu = 0$ and $\sigma = 0.4$.

Figure: $f(x)$ and $g(x)$.
Figure: Here we sampled $n = 100,000$ points. A 99% confidence interval estimate of I is 1.3337 ± 0.0037.
How do you choose a good function g for an importance sampler?
How do you choose a good function g for an importance sampler?

When we get our collection of estimates h_i, we’d like them to have as little variability as possible.
How do you choose a good function \(g \) for an importance sampler?

When we get our collection of estimates \(h_i \), we’d like them to have as little variability as possible.

Recall that each estimate \(h_i \) is defined by \(h_i \equiv \frac{f(x_i)}{g(x_i)} \). How do we choose \(g \) so as to minimize the variability in these estimates?
How do you choose a good function g for an importance sampler?

When we get our collection of estimates h_i, we’d like them to have as little variability as possible.

Recall that each estimate h_i is defined by $h_i \equiv \frac{f(x_i)}{g(x_i)}$. How do we choose g so as to minimize the variability in these estimates?

We choose a function g whose shape is close to the shape of f.
What would happen if we let \(g \) be the normal distribution with \(\mu = 0 \) and \(\sigma = 0.2 \)?
In this non-standard histogram, the vertical scale is logarithmic.

Figure: Here we sampled $n = 100,000$ points. A 99% confidence interval estimate of I is 1.3068 ± 0.0857.
Summary of importance sampling

The steps of importance sampling are:

- Choose a probability density function g that has a shape similar to f.
- Draw many x_i’s from g, and for each one compute the ratio $h_i = f(x_i)/g(x_i)$.
- The h_i’s are all unbiased estimators of I, so from them we may obtain an estimate of I with a margin of error.
When would you want to use Monte Carlo integration? If an integral is hard, can’t you just use a deterministic method, such as trapezoids?
When would you want to use Monte Carlo integration? If an integral is hard, can’t you just use a deterministic method, such as trapezoids?

The main problem arises when the integral is over a multidimensional space. With even as few as three or four dimensions, (hyper-)trapezoids become too numerous to be computed efficiently. But Monte Carlo integration does not become any less efficient in higher dimensions.
Let \(f(w, x, y, z) = |\sin(wxz)| e^{-\sqrt{w^2+x^2+y^2+z^2}} \).

\[
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(w, x, y, z) \, dw \, dx \, dy \, dz = ?
\]
Letting g be the multivariate $t_{\nu=4}$ distribution with $\Sigma = 3I_{(4)}$, and taking $n = 100,000$ samples, we estimate the integral to be approximately 33.77 ± 0.32 (with 99% confidence).
Thank you for coming!
bullard@ncssm.edu